Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Wang, H. Z., Cui, L., Dai, J., Tong, J., Cao, Z. B. \& Yu, K. B. (1995). J. Inorg. Chem. 11, 120-125. (In Chinese.)

Acta Cryst. (1999). C55, 1272-1275

Three $\mathbf{P t}^{\mathbf{I I}}$ catecholate and 1,2-dithiocatecholate complexes

M. J. Gerald Lesley, ${ }^{a} \dagger$ Wlliam Clegg, ${ }^{b}$ Todd B. Marder, ${ }^{c} \dagger$ Nicholas C. Norman, ${ }^{a}$ A. Guy Orpen, ${ }^{a}$ Andrew J. Scott ${ }^{b}$ and Jonathan Starbuck ${ }^{a}$
${ }^{a}$ School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, England, ${ }^{b}$ Department of Chemistry, University of Newcastle, Newcastle upon Tyne NE1 7RU, England, and ${ }^{\text {c Department of Chemistry, University of }}$ Durham, Science Laboratories, South Road, Durham DH1 3LE, England. E-mail: n.c.norman@bris.ac.uk

(Received Il January 1999; accepted 23 April 1999)

Abstract

In the crystal structures of the three title complexes, (benzene-1,2-diolato- O, O^{\prime}) bis (triphenylphosphine) platinum (II), $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$, (1), (benzene-1,2-dithiolato-S, S^{\prime}) bis (triphenylphosphine)platinum(II), $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$, (2), and the n-hexane hemisolvate of (benzene-1,2-diolato- O, O^{\prime})bis(tricyclohexylphosphine) platinum(II), $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right.$ $\left.\left(\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{P}\right)_{2}\right] \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{14}$, (3), the Pt atoms are tetracoordinate with distorted square-planar geometry. Compounds (1) and (2) are isostructural.

Comment

Metal catecholates have been extensively studied due to their unique electronic (Bhattacharya \& Pierpont, 1992), magnetic (Coucouvanis et al., 1993) and catalytic activity (Persson \& Andersson, 1993). Metal thiolates are important as biological electron-transfer mediators (Blower \& Dilworth, 1987). While many catecholate and thiocatecholate complexes have been characterized, for platinum, there are only two closely related cases where the crystal structures are known, namely $[\mathrm{Pt}\{1,2-$ $\left.\mathrm{O}_{2}-3,5-\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right\}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$] (Clemente et al., 1994) and $\left.\left[\mathrm{Pt}\left\{1,2-\mathrm{O}_{2}-4,5 \text {-(3-ethynylthiophene) }\right)_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Kinder \& Youngs, 1996). Other related compounds containing group ten elements and catecholate or thio-

[^0]catecholate derivatives have also been structurally characterized (Abakumov et al., 1996; Pierpont \& Downs, 1975; Darkwa, 1997; Cao et al., 1996).

Selected bond lengths and angles are given for complexes (1), (2) and (3) in Tables 1, 2 and 3, respectively. The $\mathrm{Pt}-\mathrm{P}$ bond lengths for (2) [mean $\mathrm{Pt}-\mathrm{P}$ bond length of 2.283 (7) \AA] compared with (1) [mean Pt-P 2.247 (6) \AA] are consistent with the thiocatecholate group having a stronger trans influence than

(1)

(2)

(3)
the catecholate group. The increased steric bulk of the $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ ligand compared with PPh_{3} [cone angles of 170 and 145°, respectively (Tolman, 1977)] leads to a larger $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle (by approximately 11°) for (3) than for (1) and (2). This results in smaller O-PtP angles for (3) [mean $85.0(5)^{\circ}$] compared with the mean $\mathrm{O}-\mathrm{Pt}-\mathrm{P}$ angle for (1) [91(5) ${ }^{\circ}$] and the mean $\mathrm{S}-\mathrm{Pt}-\mathrm{P}$ angle for (2) [89 (3) ${ }^{\circ}$]. The bite angles of the chelating ligands are consistent with the larger radius of sulfur compared with oxygen.

Significantly more distortion of the atoms that define the square plane around platinum is observed for (2) than for (1) or (3). The average displacement of the atoms from the square plane defined by Pt, P and S in (2) is 0.20 (4) \AA [maximum of 0.250 (1) \AA for S 1] compared with mean values of 0.10 (2) \AA for (1) and 0.058 (12) \AA

Fig. 1. The structure of (1) with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
for (3), where Pt, P and O define the square plane. A larger twist between the C_{6} ring of the chelating ligand and the platinum square plane is also observed for (2) [15.2 (2) ${ }^{\circ}$] than for (1) $\left[9.8(3)^{\circ}\right]$ and (3) $\left[7.8(3)^{\circ}\right]$.

Fig. 2. The structure of (2) with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Fig. 3. The structure of (3) with displacement ellipsofids drawn at the 50% probability level. H atoms and the hexane solvent molecule have been omitted for clarity.

Refinement of the Flack (1983) parameter for (1) indicated substantial twinning.

Experimental

Compounds (1) and (3) were formed as minor products from phosphine-exchange reactions between cis- $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Bcat})_{2}\right]$ (cat $=1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) and bis(dicyclohexylphosphino)ethane (dcpe) or $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$, respectively (Curtis et al., 1999). Compound (2) was formed in the attempted catalysed diboration of an internal alkyne with the diborane (4) compound, B_{2} (thiocat) $)_{2}\left(\right.$ thiocat $\left.=1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)($ Lesley et al., 1996). Compounds (1)-(3) are believed to be by-products formed from exposure to trace amounts of oxygen or water. Compound (1) was crystallized from a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ /hexane mixture, (2) from a CDCl_{3} /hexane mixture and (3) from a toluene/hexane mixture.

Compound (1)

Crystal data
$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$
$M_{r}=827.72$
Monoclinic
Pn
$a=9.0064(14) \AA$
$b=10.8717(11) \AA$
$c=17.585$ (2) \AA
$\beta=103.717(11)^{\circ}$
$V=1672.7(4) \AA^{3}$
$Z=2$
$D_{x}=1.643 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART CCD diffractometer
ω rotation with narrow frames
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) $T_{\text {min }}=0.252, T_{\text {max }}=0.421$
10596 measured reflections
3843 independent reflections (plus 1428 Friedel-related reflections)

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.081$
$S=0.970$
5271 reflections
425 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0370 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 223 reflections
$\theta=1.87-27.49^{\circ}$
$\mu=4.327 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$
Orange

4680 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=27.49^{\circ}$
$h=-11 \rightarrow 7$
$k=-14 \rightarrow 14$
$l=-20 \rightarrow 22$
$\Delta \rho_{\text {max }}=2.928 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.982 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure:
Flack (1983)
Flack parameter $=0.44(1)$

Table 1. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (1)

$\mathrm{P} 1-\mathrm{O} 2$	$2.042(6)$	$\mathrm{P} 1-\mathrm{P} 2$	$2.241(2)$
$\mathrm{P} 1-\mathrm{Ol}$	$2.056(6)$	$\mathrm{Ptl}-\mathrm{Pl}$	$2.252(3)$

$\mathrm{O} 2-\mathrm{Pt}-\mathrm{P} 2$
$\mathrm{O} 1-\mathrm{Pl} 1-\mathrm{P} 2$
Compound (2)
Crystal data
$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}\right)(\mathrm{C}\right.$
$M_{r}=859.84$
Monoclinic
Pn
$a=9.0177$ (7)
$\begin{aligned} & b=10.9977(8) \AA \\ & c=17.9351(12) \AA \end{aligned}$
$\beta=102.093$ (2) ${ }^{\circ}$
$V=1739.2$ (2) \AA^{3}
$Z=2$
$D_{x}=1.642 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART CCD diffractometer
ω rotation with narrow frames
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.552, T_{\text {max }}=0.655$
10615 measured reflections
4384 independent reflections (plus 927 Friedel-related reflections)

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.047$
$S=1.124$
5311 reflections
424 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0215 P)^{2}\right.$
$+2.1895 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$

$\mathrm{O} 2-\mathrm{Pt1}-\mathrm{Pl}$	$166.0(2)$
$\mathrm{Ol}-\mathrm{Pt}-\mathrm{Pl}$	$85.7(2)$
$\mathrm{P} 2-\mathrm{Ptl}-\mathrm{Pl}$	$96.86(8)$

$a=10.338$ (2)
$b=16.142$ (3)
$c=26.162$ (4)
$c=26.162(4) \AA$
$\beta=93.952$ (10) ${ }^{\circ}$
$V=4355.7$ (12) \AA^{3}
$Z=4$
$D_{x}=1.383 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART CCD
diffractometer
ω rotation with narrow frames
Absorption correction:
multi-scan (SADABS;
Sheldrick, 1997)
$T_{\text {min }}=0.571, T_{\text {max }}=0.717$

5236 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=28.44^{\circ}$
$h=-12 \rightarrow 8$
$k=-13 \rightarrow 13$
$l=-23 \rightarrow 16$
$\lambda=0.71073 \AA$
Cell parameters from 9848
reflections
$\theta=1.85-28.43^{\circ}$
$\mu=4.276 \mathrm{~mm}^{-1}$
$T=160$ (2) K
Block
$0.16 \times 0.12 \times 0.10 \mathrm{~mm}$
Orange

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.092$
$S=1.029$
7398 reflections
452 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0221 P)^{2}\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.026$
$\mu=3.329 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Needle
$0.4 \times 0.1 \times 0.1 \mathrm{~mm}$ Orange

22033 measured reflections 7428 independent reflections 4705 reflections with
$I>2 \sigma(I)$
$R_{\mathrm{int}}=0.102$
$\theta_{\text {max }}=24.75^{\circ}$
$h=-12 \rightarrow 9$
$k=-18 \rightarrow 19$
$l=-30 \rightarrow 26$
$\Delta \rho_{\text {max }}=0.919 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.688 \mathrm{e}^{\AA^{-3}}$
Extinction correction:
SHELXTL (Siemens, 1995a)
Extinction coefficient: 0.00031 (4)

Scattering factors from International Tables for Crystallography (Vol. C)
$\Delta \rho_{\text {max }}=0.537 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.895$ e \AA^{-3}
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure:
Flack (1983)
Flack parameter $=$ -0.006 (4)

Table 2. Selected geometric parameters ($A^{\circ},{ }^{\circ}$) for (2)

$\mathrm{Pt1}$-P2	2.2730 (10)	$\mathrm{Pl} 1-\mathrm{S} 2$	2.3070 (10)
$\mathrm{Pl} 1-\mathrm{Pl}$	2.2930 (11)	$\mathrm{P} 11-\mathrm{S} 1$	2.3082 (10)
P 2 --Pt1-P1	97.23 (4)	$\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{Sl}$	169.08 (4)
$\mathrm{P} 2-\mathrm{Pt1}-\mathrm{S} 2$	91.22 (4)	$\mathrm{P} 1-\mathrm{Pr} 1-\mathrm{S} 1$	86.04 (4)
$\mathrm{P} 1-\mathrm{Pt1}-\mathrm{S} 2$	164.68 (4)	$\mathrm{S} 2-\mathrm{Pt} 1-\mathrm{S} 1$	88.04 (4)

Compound (3)

Crystal data

$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{P}\right)_{2}\right] \cdot-$	Mo $K \alpha$ radiation
$\quad 0.5 \mathrm{C}_{6} \mathrm{H}_{14}$	$\lambda=0.71073 \AA$
$M_{r}=907.10$	Cell parameters from 178
Monoclinic	reflections
$P 2_{1} / n$	$\theta=1.48-24.75^{\circ}$

Table 3. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (3)

$\mathrm{Pl}-\mathrm{O} 2$	$2.033(5)$	$\mathrm{Pll}-\mathrm{Pl}$	$2.265(2)$
$\mathrm{Ptl}-\mathrm{O} 1$	$2.051(5)$	$\mathrm{Ptl}-\mathrm{P} 2$	$2.268(2)$
$\mathrm{O} 2-\mathrm{Pt}-\mathrm{O} 1$	$82.3(2)$	$\mathrm{O} 2-\mathrm{Ptl}-\mathrm{P} 2$	$85.5(2)$
$\mathrm{O} 2-\mathrm{Pt}-\mathrm{P} 1$	$166.33(15)$	$\mathrm{Ol}-\mathrm{Pt}-\mathrm{P} 2$	$166.8(2)$
$\mathrm{O} 1-\mathrm{Pt}-\mathrm{Pl}$	$84.45(15)$	$\mathrm{Pl}-\mathrm{Pt}-\mathrm{P} 2$	$107.96(8)$

H atoms were constrained to idealized geometries with a riding model and were assigned isotropic displacement parameters $U(\mathrm{H})=1.2 U_{\text {iso }}(\mathrm{C})$. The large residual electron-density peaks for (1) ($\sim 1 \AA$ from Pt) may be associated with relatively poor crystal quality. The large value for $R_{\text {int }}$ for (3) (>0.1) is likely to be due to the relatively low intensity of the diffraction data, coupled with moderately high absorption.

For all compounds, data collection: SMART (Siemens, 1995b). Cell refinement: SAINT (Siemens, 1995b) for (1) and (3); local programs for (2). For all compounds, data reduction: SAINT; program(s) used to solve structures: SHELXTL (Siemens, 1995a); program(s) used to refine structures: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the EPSRC and NSERC of Canada (MJGL and TBM) for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN 1077). Services for accessing these data are described at the back of the journal.

References

Abakumov, G. A., Cherkasov, V. K., Nevodchikov, V. I., Teplova, I. A., Zakharov, L. N., Fukin, G. K. \& Struchkov, Y. T. (1996). Russ. Chem. Bull. 45, 446-450.
Bhattacharya, S. \& Pierpont, C. G. (1992). Inorg. Chem. 31, 35-39.
Blower, P. J. \& Dilworth, J. R. (1987). Coord. Chem. Rev. 76, 121185.

Cao, R., Hong, M. C., Jiang, F. L., Kang, B. S., Xue, X. L. \& Lu, H. Q. (1996). Polyhedron, 15, 2661-2670.

Clemente, J. M., Wong, C. Y., Bhattacharyya, P., Slawin, A. M. Z., Williams, D. J. \& Woollins, J. D. (1994). Polyhedron, 13, 261-266.
Coucouvanis, D., Jonasdottir, S. G., Christodoulou, D., Kim, C. G. \& Kampf, J. W. (1993). Inorg. Chem. 32, 2987-2988.
Curtis, D., Lesley, M. J. G., Norman, N. C., Orpen, A. G. \& Starbuck, J. (1999). J. Chem. Soc. Dalton Trans. pp. 1687-1694.

Darkwa, J. (1997). Inorg. Chim. Acta, 257, 137-141.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kinder, J. D. \& Youngs, W. J. (1996). Organometallics, 15, 460-463.
Lesley, M. J. G., Nguyen, P., Taylor, N. J., Marder, T. B., Scott, A. J., Clegg, W. \& Norman, N. C. (1996). Organometallics, 15, 5137-5154.
Persson, C. \& Andersson, C. (1993). Polyhedron, 12, 2569-2575.
Pierpont, C. G. \& Downs, H. H. (1975). Inorg. Chem. 14, 343-347.
Sheldrick, G. M. (1997). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Siemens (1995a). SHELXTL. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995b). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tolman, C. A. (1977). Chem. Rev. 77, 313-348.

Acta Cryst. (1999). C55, 1275-1278

Tetrachlorotetrakis(propan-2-ol)uranium(IV) and tetrachlorotetrakis-(propan-2-ol)thorium(IV)

Pamela L. Gordon, ${ }^{a}$ Julia A. Thompson, ${ }^{b}$ John G. Watkin, ${ }^{c}$ Carol J. Burns, ${ }^{c}$ Nancy N. Sauer ${ }^{c}$ and Brian L. Scott ${ }^{c}$
${ }^{a}$ Callaway Golfball Company, 2285 Rutherford Road, Carlsbad, CA 92008-8815, USA, ${ }^{\text {b }}$ PolyIonix Separation Technologies Inc., Dayton, NJ 08810, USA, and ${ }^{\text {c Los Alamos }}$ National Laboratory, Los Alamos, NM 87545, USA. E-mail: nsauer@lanl.gov
(Received 1 December 1998; accepted 6 April 1999)

Abstract

The title complexes, $\left[\mathrm{UCl}_{4}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right) 4\right]$ and $\left[\mathrm{ThCl}_{4}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right.\right.$ $\mathrm{O})_{4}$], are isomorphous and crystallize in the tetragonal space group $I 4_{1} / a$. The molecules have approximate dodecahedral symmetry and occupy sites of $\overline{4}$ symmetry. Principal bond lengths include $\mathrm{U}-\mathrm{Cl}=2.6478(10)$, $\mathrm{U}-\mathrm{O}=2.478(3), \mathrm{Th}-\mathrm{Cl}=2.7066(8)$ and $\mathrm{Th}-\mathrm{O}=$ 2.515 (2) Å.

Comment

In previous publications, we have examined the direct reaction between lanthanide and actinide metals and elemental iodine, employing either tetrahydrofuran (THF) or alcohols as solvent (Barnhart et al., 1995; Van der Sluys et al., 1992). We have now extended these studies to include the reaction of thorium and uranium metal turnings with chlorine gas, which may be conveniently bubbled through a flask containing isopropanol solvent and the appropriate actinide metal. Subsequent work-up provides crystals of uranium or thorium tetrachloride which contain four coordinated molecules of isopropanol. $\mathrm{UCl}_{4}\left({ }^{i} \mathrm{PrOH}\right)_{4}$ (Smith et al., 1969) and $\mathrm{ThCl}_{4}\left({ }^{(}{ }^{\mathrm{PrOH}}\right)_{4}$ (El Aggan, 1973) have been described previously but they have not been structurally characterized. We report here the structural characterization of tetrachlorotetrakis(isopropanol)uranium(IV), (I), and tetrachlorotetrakis(isopropanol)thorium(IV), (II).

(I)

(II)

Complexes (I) and (II) are isostructural and crystallize in the tetragonal space group $I 4_{1} / a$. The complexes occupy sites of $\overline{4}$ symmetry (Figs. 1 and 2). The ligands define a somewhat distorted dodecahedral structure about the metal center, with the chloride ligands occupying ' B ' sites and the isopropanol ligands occupying ' A ' sites (Kepert, 1978).

The $\mathrm{U}-\mathrm{Cl}$ distance of $2.6478(10) \AA$ is slightly longer than the mean value of 2.595 (2) \AA observed in seven-coordinate $\mathrm{UCl}_{4}(\mathrm{thf})_{3}$ (Van der Sluys et al., 1993),

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and with 50% probability displacement ellipsoids. H atoms have been omitted for clarity. The view is down the fourfold axis of the $\overline{4}$ symmetry element [symmetry codes: (i) $y-\frac{1}{4}, \frac{5}{4}-x, \frac{1}{4}-z$; (ii) $\frac{5}{4}-y, \frac{1}{4}+x, \frac{1}{4}-z$; (iii) $\left.1-x, \frac{3}{2}-y, z\right]$.

Acta Crystallographica Section C ISSN 0108-2701 © 1999

[^0]: \dagger MJGL and TBM also carried out this work at the Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

